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1. Vibration isolation

The concept of vibration isolation, i.e., how to minimize the force or motion transmitted to a
device from a source of vibration, is well established (see for example, Ref. [1]). An outline of the
theory is based on the following.
Consider a translational mechanical system consisting of a mass supported by a spring and

damper, which are themselves supported by a base as shown in Fig. 1. If the motion of the base is
harmonic, e.g., yðtÞ ¼ Y sinot; then it can be shown that the steady state displacement
transmissibility, X=Y (where X is the amplitude of the mass), is given by the familiar expression

X

Y
¼

1þ ð2zOÞ2

ð1� O2Þ2 þ ð2zOÞ2

� �1=2
: ð1Þ

This is plotted in Fig. 2 as a function of the frequency ratio O ¼ o=on; where on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
for a

number of representative damping ratios, z:
Thus, the transmissibility is small for relatively high-frequency ratios, i.e., for O >ffiffiffi
2

p
; X=Yo1:0: Given a forcing frequency, o; a typical design option would be to mount the

device on a soft spring to induce a low natural frequency, on: However, the spring should
obviously be stiff enough to support the mass statically (since mg ¼ kx), and this often places
practical limits on the spring stiffness.

2. Post-buckling of a strut

Axially loaded structures typically possess non-linear characteristics, especially close to, or
beyond, initial buckling. In most cases, buckling is viewed as an undesirable occurrence, in
particular when this precipitates a total loss of stiffness and collapse. However, certain structural
forms possess a significant amount of post-buckled strength which can be utilized in design. For
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example, in aeronautics the weight of a flight vehicle is of supreme importance and hence allowing
a panel to buckle (elastically) may be admissible.
In this work we develop the notion of using post-buckled struts as the spring components in a

vibration isolation system, as indicated schematically in Fig. 1.
Consider a thin elastic structural element, pinned at both ends and subject to constant

axial loading as shown in Fig. 3. This is the classic Euler strut (elastica) with flexural rigidity EI ;
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Fig. 1. Schematic of a mass isolated from the motion of a foundation.
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Fig. 2. Displacement transmissibility.

EI

P

x

w(x)

L

δ
s

Fig. 3. Schematic of a continuous buckled strut.
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length L; and P is the axial load. An exact (but cumbersome) solution to the governing
equation can be obtained using elliptic integrals [2]. Since we will be focusing on mildly
buckled behavior certain truncations can be performed or an approximate energy analysis can be
used [3].
For this type of thin prismatic beam, it can be shown, assuming a half-sine wave as the buckling

mode shape, i.e.,

w ¼ Q sin
px

L
; ð2Þ

that the postbuckled equilibrium configuration is described by

P

Pe

¼ 1þ
p2

8

Q

L

� �2

; ð3Þ

where

Pe ¼ EI
p
L

� �2
: ð4Þ

Pe is the classical Euler critical load [4,5], and provided the axial load remains less than this value,
the trivial equilibrium state is stable. Beyond the critical value, the strut deflects into one of two
symmetrically located equilibria as given by Eq. (3).
The geometric relation between the lateral deflection Q and the end shortening d can also be

established:
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i.e., the end shortening is approximately related to the square of the lateral deflection [4].
Eliminating Q in Eqs. (3) and (5) leads to
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This is a result good for lateral deflections up to about 20% of the length, [2]. Eqs. (3) and (6) are
shown by the solid curves in Fig. 4(a) and (b), respectively.
It is well known that initial geometric imperfections have a relatively large influence on the

behavior of axially loaded structures [5,6]. This effect can be incorporated into the analysis by
assuming an initial equilibrium configuration described, for example, by

w0 ¼ Q0 sin
px

L
: ð7Þ

An expression analogous to Eq. (3) but incorporating the initial curvature of the strut is given
by [2]

P
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¼ 1�
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The corresponding imperfect load-deflection curves are also plotted in Fig. 4 as dashed lines for a
representative imperfection amplitude of Q0=L ¼ 0:01: The relation between axial load and end
shortening for moderately large lateral deflections is then given by
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where we recover Eq. (6) for Q0=L ¼ 0:
Hence, if we load the strut axially to just above its elastic critical load, for example,

P

Pe

¼ 1:05; ð10Þ

then (for Q0 ¼ 0):

Q

L
E0:2;

d
L
E0:1: ð11Þ

If we use this as our basic equilibrium, we observe a (low slope) linear relation for small
oscillations about this point based on new local co-ordinates:

%p ¼
P

Pe

� 1:05; %d ¼
d
L
� 0:1; ð12Þ

and indicated in Fig. 4(b). Again, for the imperfect strut we would expect an equilibrium datum
for a slightly lower axial load but with practically the same stiffness. This strut then, is able to
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Fig. 4. Deflection of the strut as a function of axial load: (a) midpoint lateral deflection, (b) end shortening.
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support a relatively high axial load (sufficient to cause buckling) but exhibits the desirable soft
spring characteristic.

3. Experimental verification

3.1. The shaker

In order to test this approach to vibration isolation the experimental system shown in Fig. 5
was constructed. The vertical shaker was based on a slider-crank attached to a variable speed
motor. The forcing amplitude was fixed at 3 mm; and Fig. 6(a) shows a typical time series of the
vertical motion of the platform (which is not quite simple harmonic). Part (b) of this figure is a
frequency spectrum of this signal. We observe the higher harmonics typical of this kind of shaker.
Furthermore, we also note some slight variability in the amplitude of the shaker platform. These
effects are not modelled in this paper, but a more thorough description of their effect on dynamic
response can be found in Ref. [7]. It is anticipated that a more consistent harmonic input would
result in improved isolation. The shaker then imparts motion through the isolation system to the

Fig. 5. Photograph of the experimental set-up.
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mass, which moves vertically and is guided by low-friction linear bearings. The frequency of
excitation was then varied over an appropriate range and the motion of the mass was measured.

3.2. Spring characteristics

Two struts made of spring steel were used as the support system. The experimental results are
presented in terms of dimensional units. Plots of axial load versus lateral deflection and end
shortening are shown in Fig. 7, where the deflections were measured using an LVDT. The two
struts were 268 mm long, 19 mm wide, 0:66 mm thick (and thus I ¼ 4:55� 10�13 m4), and taking
a typical value for Young’s modulus of 200 GPa; we anticipate an Euler load (using Eq. (4)) in the
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Fig. 6. The characteristics of the shaker: (a) input time series, (b) corresponding frequency spectrum.
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Fig. 7. Axial load versus (a) midpoint lateral deflection and (b) end shortening for the experimental system.
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vicinity of 25 N � 2:55 kg: The experimental result indicates a critical load in this vicinity, and a
Southwell plot [2] can be used to recast the data from Fig. 7(a) to estimate a critical load of
approximately 23 N: Experimental systems necessarily include initial geometric imperfections,
and hence the ‘‘critical load’’ is manifest as a relatively rapid increase in the deflection due to
additional load. The axial load versus end shortening results are shown in Fig. 7(b). These data
are based on the average results of three tests, although the actual variation between runs was
negligible. These results can be compared with the corresponding theoretical curves given in
Fig. 4. Also plotted in this figure is the corresponding lateral deflection at the center of the strut
(Fig. 7(a)). The quadratic relation between lateral deflection and end shortening established by
Eq. (5) is thus confirmed.
We choose a point on this (imperfect) curve (Fig. 7(b)) as the (buckled) equilibrium position:

P ¼ 23:5 N-ðP=PeE1:0Þ; ð13Þ

d ¼ 15:2 mm-ðd=L ¼ 0:057Þ; ð14Þ

and this is the point about which transmissibility is measured. Locally the stiffness is
approximately 195 N=m (i.e., the slope of P=Pe versus d=L about the chosen operating point)
and since the mass is 2:4 kg we would thus expect a natural frequency of free vibration close to
9 rad=s � 1:43 Hz: A representative free decay result is shown in Fig. 8. This illustrates a damped
oscillation started from an offset and released, giving a natural period of approximately 0:68 s
(and hence on ¼ 1:47 Hz), which corresponds quite closely to the estimated value, although we
would expect damping to reduce the measured frequency somewhat. However, we anticipate
effective isolation for forcing frequencies o >

ffiffiffi
2

p
onE2:2 Hz: It is worth noting that replacing the

buckled struts with conventional linear springs of the same stiffness would result in a static
deflection of approximately 60 mm; i.e., four times the deflection of the struts.

3.3. The forced response

When the base excitation is applied to the strut-supported mass, we desire the transmissibility
ratio (given by Eq. (1)) to be small. This should be the case for O >

ffiffiffi
2

p
: Experimental results are

shown in Fig. 9 for a range of frequency ratios. The low transmissibility illustrated in Fig. 2 is thus
confirmed. Three responses are shown as insets for different frequency ratios. The time series
occurring when the forcing frequency is exactly twice the natural frequency (indicated by the star)
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Fig. 8. Free vibration of the system about a post-buckled equilibrium configuration. Note, in this figure the origin
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shows an interesting subharmonic of order two. This is a consequence of combined parametric
and external forcing terms in the governing dynamics equations and has been the subject of an
analytic and numerical study [8]. In general we see a highly attenuated response for higher
frequencies.

4. Conclusions

This paper has considered a novel use of buckled struts for the purpose of vibration isolation.
Experimental verification was achieved without the need for fine tuning, although of course there
are a number of practical limitations involved with this concept. It is important that the axial load
does not reduce below the critical buckling value, since this would result in a relatively hard
stroke-out (i.e., the axial stiffness in the pre-buckled state is very high, although the initial
imperfection helps to mitigate this effect). Also, for large deformations the ‘‘linearity’’ in the post-
buckled stiffness is lost and various non-linear effects may be encountered [9]. The transmissibility
can also be reduced by reducing the damping present in the system. Although, of course, a high
damping is desirable in the event that the system forcing tends to cause resonance. In a practical
situation it may also be quite difficult to maintain simply-supported boundary conditions and
clamped ends may be easier to achieve. However, changing the number (or thickness) of the struts
provides useful means of changing the critical load without compromising the low stiffness. This
approach has been shown to have promise in isolating very sensitive systems subject to very high
frequency excitation [10]. However, these initial results are encouraging, and indeed, there may be
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Fig. 9. Transmissibility for the displacement of the strut-supported mass.
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other types of post-buckled structures which would fulfil the requirements of vibration isolation
even more effectively.
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